


Improved methods of planting material production.

Improved technologies in Mushroom cultivation.

Problem

- Absence of infrastructure facility for vegetative propagation by small and marginal farmers
- Lack of technical knowhow
- Over dependence on private nurseries

Solution

- Providing infrastructure facilities required for multiplication
- Selection of varieties with desirable qualities
- Availability of planting material at affordable cost
- Farmers can cultivate superior plants for next generation

Problem

High percentage of unproductive plants in the field.
 (More than 40%)

Solution

- Developed an innovative simple technology for initiating healthy root system by filling organic manure and top soil at the basal nodes of pepper vines.
- Established 50 demonstration plots.

Problem

 Farmers depend on conventional varieties with low productivity.
 Pepper – low productivity
 Ginger – low oleoresin
 Turmeric – Low curcumin

Solution

- Introduced 18 different varieties of pepper from IISR and Pepper Research Station Panniyur.
- Introduced new varieties of ginger and turmeric developed by IISR and Kerala Agriculture University.
 Disseminated through 100 farmers through ToT Scheme of DASD (Directorate of Arecanut and Spices Development)

Problem

- Farmers depend on stem cuttings for planting material production.
- Unavailability of quality stem cutting.

Solution

Introduced and popularized serpentine method of planting material production in black pepper.

Problem

Low bio efficiency.

Solution

- Developed a growth promoter.
- Increased the clump size by reducing the number of holes in growth bed.
- Enhanced air circulation by fitting an exhaust fan in reverse manner.
- 90% bio-efficiency increase is observed.

Highlights from Core area 3: Agriculture Technologies to promote organic farming and Yield Enhancement

This initiative is to promote sustainable agricultural production through Organic farming and innovative cost effective technologies.

CORE Support Programme (2008-2018)

Shri. Chander Mohan/Dr. Sunil K Agarwal
Science for Equity Empowerment and Development (SEED)
Department of Science and Technology
Ministry of Science and Technology
Technology Bhavan,
New Delhi-110 016

Dr. Hubby Mathew/Shri. Sijo Jose Peermade Development Society P.B. No. 11, Peermade, Idukki District Kerala-685 531

Technologies

Promotion of underutilized crops

Highlights

Problem

• Genetic erosion • Short lifespan of hybrid verities • Susceptible to pest and diseases • Lack of varieties having regular bearing habit •

Solution

- Introduced and promoted 10 varieties of underutilized crops.(Psophocarpus tetragonolobus, Canavalia aladiata, Dioscorea alata var bulbifera, Amaranthus viridis, Momordica dioica, Ipomea muricata, Colocasia esculenta, Dioscorea alata – local cultivars – 12)
- Enhanced the number of kitchen gardens.

Less number of kitchen gardens

• Number of farmers adopted – 150 farmers in three districts

Problem

• Mono-cropping • Price fluctuation in rubber Solution

- Introduced cocoa, arrowroot and black pepper in rubber plantations.
- Designed new spacing to promote mixed farming. (20 feet*10 feet)
- Identified and popularized shade loving black pepper varieties. (Panniyur-5, Narayakodi, Karimunda)
- Introduced Curcuma zedoria as intercrop
- Number of farmers adopted 600 (Idukki & Kottayam districts)
- Optimum growth and yield observed above an altitude of 1600 feet.

Problem

High cost of cultivation of existing system in HDP.

Solution

- New nursery technique suitable for HDP using decapitation technology.
- Needs only single sucker for getting 2-3 bunches.
- Trial plot in 50 farmer's plots.

- Scarcity of proper organic inputs against pest and pathogens Solution
- Introduced, multiplied and popularized bio control agents Trichoderma, Metarhizium, Beauveria, EPN and Pseudomonas.
- Number of farmers adopted More than 5000

Intra-specific grafting technology in coffee

is its strong root system. • Number of experimental plots – 300 tribal farmer's plot.

Problem

Solution

Lack of adaptable varieties.

• High susceptibility to abiotic stress.

identification of good varieties.

Idukki and Kottavam districts.

stem cuttings.

Problem

Solution

Seed propagation in of black pepper

Lateral bud initiation in black pepper

Problem

 Low productivity due to low branching. (85 - 120 Kg/Acre)

Trials started to promote seed propagation and

• Low tolerance of commercial varieties to drought. • Low productivity of traditional varieties. (300 Kg/Acre)

• Introduced toppee stage grafting and cleft grafting.

• Commercial varieties such as Arabica and Robusta were

grafted with tree coffee. The advantage of tree coffee

• Growth, disease resistance and drought resistance is low in

vegetative propagation. • Depend on traditional varieties. •

Root shoot ratio is not ideal to withstand summer season in

• Identified one seedling with notable difference with the

Kottanadan (A traditional variety) and Pannivur-1 (A Hybrid

variety) • 300 farmer's plots were chosen as trial plots in

mother plant in a population. • Seeds selected from

Solution

- Developed an innovative harvesting method to initiate more branching.
- 2-6 secondary branches with spikes observed per branch.

Somatic embryogenesis in black pepper.

Problem

- Lack of true to type quality planting material.
- High level of systemic infections in shoot tip culture.

Solution

- Developed a protocol for somatic embryogenesis from nucellar tissues
- Two media combinations were developed suitable for solid and liquid medium.

Shoot tip culture in Vanilla.

Problem

• Scarcity of planting material due to severe Fusarium infection.

Our role

- Developed a protocol for mass multiplication.
- Cultures initiated for mass multiplication.